Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Type of study
Language
Document Type
Year range
1.
J Manuf Syst ; 60: 876-892, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1157514

ABSTRACT

The SARS-CoV-2 pandemic presented European hospitals with chronic shortages of personal protective equipment (PPE) such as surgical masks and respirator masks. Demand outstripped the production capacity of certified European manufacturers of these devices. Hospitals perceived emergency local manufacturing of PPE as an approach to reduce dependence on foreign supply. The fact of a pandemic does not circumvent the hospital's responsibility to provide appropriate protective equipment to their staff, so the emergency production needed to result in devices that were certified by testing agencies. This paper is a case study of the emergency manufacturing of respirator masks during the first month of the first wave of SARS-CoV-2 pandemic and is separated into two distinct phases. Phase A describes the three-panel folding facepiece respirator design, material sourcing, performance testing, and an analysis of the folding facepiece respirator assembly process. Phase B describes the redevelopment of individual steps in the assembly process.

2.
Sustainability ; 13(2):797, 2021.
Article in English | MDPI | ID: covidwho-1031159

ABSTRACT

The current COVID-19 pandemic has resulted in an immense and unforeseen increase in demand for personal protective equipment (PPE) for healthcare workers worldwide. Amongst other products, respirator masks are crucial to protect the users against transmission of the virus. Decontamination and reuse of the existing stock could be a solution to the shortage of new respirators. Based upon existing studies, it was found that (I) a solid quality control method is essential to test product reuse, (II) in-depth evaluation of the different parts of the filtering facepiece respirator (FFR) should be considered, and (III) communication of the reuse cycle is essential to take track of the amount of reuse, as this is limited to ensure quality. The goal of this paper is two-fold. First, we identify the impact of decontamination on the different parts of the FFRs and how the quality control should be performed. Two different types of FFRs are analysed within this paper, resulting in the recommendation of combining quantitative respirator mask fit testing with a thorough sensory evaluation of decontaminated FFRs to qualify them for reuse. Secondly, the possibilities of communication of this reuse to the eventual user are mapped through in-depth reasoning.

SELECTION OF CITATIONS
SEARCH DETAIL